Promise you quality production .... worthy you!

Engineering Physics

Engineering Physics

by Ramar, M.
 

PRICE: ₹ 2,695.00
DISCOUNT: ₹ 404.25
OUR PRICE: ₹ 2,290.75

  • Year: 2025
  • Paperback/Hardbound: Hardbound
  • ISBN: 9789356519992
  • Language: English
 
 

1. ELASTICITY, VISCOSITY, SURFACE TENSION, ULTRASONICS AND HEAT 
1. ELASTICITY 
1.1 Introduction   1.2 Different Moduli of Elasticity  1.3 Poisson’s Ratio 1.4 Energy Stored in a Stretched Wire  1.5 Bending of Beams  1.6 Expression for the Bending Moment  1.7 Theory of Non-uniform Bending . 1.8 Determination of Young’s Modulus by Non-uniform Bending  1.9 Torsion of a Wire-Expression for Torque (couple) per
Unit Twist 1.10 Torsion Pendulum   1.11 Determination of Rigidity Modulus by Torsion Pendulum 
2. VISCOSITY  2.1 Streamline Flow and Turbulent Flow 2.2 Coefficient of Viscosity  2.3 Rate of Flow of Liquid in a Capillary Tube – Poiseuille’s  Formula (I Method) (Method of Dimensions) 2.4 Derivation of Poiseuille’s Formula (II Method) 2.5 Poiseuille’s Method for Determining Coefficient of Viscosity of a Liquid (Variable Pressure Head) 2.6 Terminal Velocity 2.7 Stokes’ Law 2.8 Determination of η a Highly Viscous Liquid (Stokes’ Method) 2.9 Lubrication 
3. SURFACE TENSION   3.1 Introduction  3.2 Molecular Theory of Surface Tension  3.3 Pressure Difference Across a Liquid Surface  3.4 Excess Pressure Inside a Liquid Drop 3.5 Excess Pressure Inside a Soap Bubble  3.6 Drop - weight Method of Determining the Surfacem Tension of a Liquid 3.7 Interfacial Surface Tension 3.8 Experiment to Determine the Interfacial Tension   Between Water and Kerosene 
4. ULTRASONICS  4.1 Introduction 4.2 Production of Ultrasonics 4.2.1 Mechanical Method 4.2.2 Piezoelectric Generator 4.2.3 Magnetostriction Generator 4.3 Detection of Ultrasonics 4.4 Applications of Ultrasonics 
5. HEAT   5.1 Derivation of Critical Constants  5.2 Joule – Kelvin Effect 5.3 Porous Plug Experiment 5.4 Theory of Porous Plug Experiment (Theory of Joule-Kelvin
Effect) 5.5 Regenerative Cooling 5.6 Liquefaction of Gases 5.6.1 Introduction 5.6.2 Liquefaction of Air - Linde’s Process  5.6.3 Uses of Liquid Air   
5.7 Adiabatic Demagnetisation  5.8 Transmission of Heat 5.8.1 Conduction  5.8.2 Convection  5.8.3 Radiation  5.9 Co-efficient of Thermal Conductivity  5.10 Cylindrical Flow of Heat  5.11 Determination of Thermal Conductivity (K), of a Bad  Conductor (Card Board) by Lees Disc Method   

2. OPTICS, POLARIZATION AND LASER 
1. MICROSCOPE 1.1 Basics of a Microscope 1.2 Electron Microscope  1.3 Scanning Electron Microscope (SEM)  1.4 Transmission Electron Microscope (TEM) 
2. POLARIZATION 
2.1 Introduction 2.2 Plane Polarized Light  2.3 Polarization by Reflection 2.4 Plane Polarized Light Using Piles of Plates 2.5 Double Refraction 2.6 Elliptically and Circularly Polarized Light 2.7 Retarding Plates 2.8 Detection of Plane, Circular, and Elliptically Polarized Light .
3. LASER  3.1 Introduction 3.2 Principle  3.2.1 Absorption 3.2.2 Spontaneous Emission  3.3 Principle of Laser 3.3.1 Population Inversion  3.4 The Ruby Laser  3.5 Helium – Neon Laser 
3.6 Semiconductor Laser 3.7 Properties of a Laser Beam 3. MAGNETIC MATERIALS 1.1 Introduction 1.2 Magnetic Parameters 1.3 Bohr Magneton 1.4 Classification of Magnetic Materials 
1.4.1 Diamagnetic Materials 1.4.2 Paramagnetic Materials 1.4.3 Ferromagnetic Materials 1.4.4 Antiferromagnetic Materials 1.4.5 Ferrimagnetic Materials 1.5 Domain Theory of Ferromagnetism 
1.5.1 Domain Theory - Experimental Verification1.5.2 Magnetostatic Energy 1.5.3 Bloch or Domain Wall 1.5.4 Magnetostriction Energy 1.6 Hysteresis Curve 1.7 Hard and Soft Magnetic Materials 
1.7.1 Soft Magnetic Materials 1.7.2 Hard Magnetic Materials 1.8 Antiferromagnetic Materials  1.9 Ferrimagnetic Materials (Ferrites)  1.9.1 Structure of Ferrites 1.9.2 Hysteresis Curve 1.9.3 Applications 
4. CONDUCTING MATERIALS AND SUPERCONDUCTORS  1. CONDUCTING MATERIALS
1.1 Introduction 1.2 Electrical Conduction 1.3 Classification of Conducting Materials 1.4 Classical Free Electron or Drude Lorentz Theory of Metals 1.5 Expression for Electrical Conductivity & Drift Velocity 1.6. Wiedemann – Franz Law 1.7. Statistics and Band Theory of Solids .1.7.1. Fermi – Dirac Statistics 
2. SUPERCONDUCTORS 
2.1 Introduction 2.2 General Properties of Superconducting Materials 2.2.1 Electrical Resistance 2.2.2 Magnetic property 2.2.3 Diamagnetic property (Meissner Effect)2.2.4 Effect of Electric Current
2.2.5 Effect of Pressure 2.2.6. Isotopic Effect  2.3 Types of Superconductors 2.4 Bardeen, Cooper and Schrieffer (BCS) Theory 2.4.1 Electron - Phonon Interaction 2.5 Applications  2.5.1 Superconducting Quantum Interface Device (SQUID) 2.5.2 Cryotron  2.5.3 Magnetic Levitation (Maglev)  2.6 Other Applications  5. X-RAYS AND SOLIDS 1. X-RAYS  1.1. Introduction  1.2. Production of X-rays 1.3. The Absorption of X-rays  1.4. X-ray Absorption Edges 1.5. Laue’s Experiment  1.6. Bragg’s Law  1.7. The Bragg X-ray Spectrometer 
1.8. The Powder Crystal Method 1.9. The Laue Method 1.10. Rotating-Crystal Method 2. X-RAY CRYSTALLOGRAPHY  2.1 Types of Solids 2.2 Periodic Arrays of Atoms  2.3 Crystal Translation Vectors and Lattices 2.4 The Crystal Lattice  2.5 Unit Cell  2.6 Primitive Lattice Cell  2.7. Elements of Symmetry  2.8 Two-Dimensional Lattice Types  2.9 Bravais lattices   2.10. Miller Indices   2.11. Typical Crystal Structures